В IBM создали способный к научным открытиям искусственный интеллект

Новости дня России и мира
18 Апрель 2023
0 / 5 (0 голосов)
Технологии

AI-Descartes от IBM переоткрыл третий закон Кеплера и уравнение адсорбции Ленгмюра

Фото: Gorodenkoff / Shutterstock / Fotodom

Специалисты IBM разработали новый искусственный интеллект (ИИ), который способен делать научные открытия. Согласно статье, опубликованной в Nature Communication, ИИ AI-Descartes заново «открыл» третий закон Кеплера, вывел уравнение адсорбции газов твердыми поверхностями Ленгмюра, и предложил хорошее приближение формулы замедления времени при высоких скоростях в рамках специальной теории относительности (СТО) Эйнштейна.

Ключевым методом, который использует AI-Descartes, является символьная регрессия, заключающаяся в поиске математических выражений, которые наилучшим способом соответствуют наблюдаемым данным, путем случайного комбинирования операторов (+, -, ×, ÷, квадратный корень, логарифм, экспонента), констант и других «блоков», при этом выражение не должно быть слишком сложным. Сама по себе символьная регрессия имеет ограничения, поскольку не все математические выражения, соответствующие данным, имеют научный смысл.

Чтобы решить эту проблему, разработчики объединили символьную регрессию с автоматизированными инструментами аргументации (англ. reasoning tools). Символьная регрессия проводилась методом смешанно-целочисленного нелинейного программирования (MINLP), а в качестве инструмента аргументации была выбрана KeYmaera X — система автоматизированного доказательства теорем, которая способна к дедукции, алгебраическим или компьютерно-алгебраическим рассуждениям.

Читайте также:  Стало известно об уничтожении половины гаубиц НАТО в зоне СВО «Ланцетами»

Материалы по теме:На новой волне.Технологии меняют мир до неузнаваемости. Каким он будет?12 ноября 2021Место притяжения.Как интернет-торговля сделает жизнь миллионов людей лучше и поможет экономить 7 декабря 2021

KeYmaera X предоставляла либо формальное доказательство выводимости полученных математических формул из набора известных аксиом (например, законов Ньютона), либо доказывала, что они противоречат друг другу. В том случае если математическое выражение не было выводимо, система оценивала, насколько оно близко к выводимой формуле.

Для каждой символьной модели, полученной через регрессию, система определяла «расстояние» между сгененированным выражением и наблюдаемыми данными, а также между выражением и теоретическими предпосылками. Например, в случае третьего закона Кеплера такой предпосылкой служили законы Ньютона. «Расстояния» являлась мерой ошибки, которая может возникать из-за погрешностей в измерениях или неполноты и неточности теоретических предпосылок. Если модель не могла быть выведена из набора аксиом, то система аргументации делала вывод, что необходимо получить дополнительные данные либо добавить ограничения. Мера ошибки позволяла очертить круг моделей, которые могли представлять наибольший интерес для дальнейшей проверки.

Читайте также:  В России создадут отечественный аналог eSIM

Таким образом, подход, реализуемый в AI-Descartes, отличается от традиционного научного подхода. Вместо того чтобы из общей теории выводить гипотезы и проверять их на эмпирических данных, ИИ строит из эмпирических данных гипотезы и сверяет их с теорией.

На ту же тему
Виджеты

Это место для ваших персональных виджетов. Ставьте из админки - рубрики, архивы, метки, календарь, свежие комментарии, произвольное меню и др.

Свежие записи
Предсказано неизбежное затопление Нью-Йорка
0 / 5 (0 голосов)
Уточнены сроки запуска первой в истории современной России миссии на Луну
0 / 5 (0 голосов)
В NASA назвали срок достижения человеком Марса
0 / 5 (0 голосов)
«Рособоронэкспорт» представит подводный беспилотник в Санкт-Петербурге
0 / 5 (0 голосов)
Обнаружено противоречащее принятой модели поведение струй черных дыр
0 / 5 (0 голосов)
Новости дня России и мира © 2023 Наверх